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Abstract

Structural VARs are often identified by using instruments derived from the residuals of auxiliary
regressions (e.g., Romer and Romer (2004)). We evaluate the finite sample performance of this pro-
cedure in a series of Monte Carlo experiments using the Smets and Wouters (2007) model as our
laboratory. We find that such instruments are meaningfully correlated not only with the monetary
policy innovation, but also with other structural shocks, leading to substantial biases and variation
in estimated impulse responses. We then examine several proposals from the literature designed to
mitigate these issues. In our experimental setting, however, we find that none of these suggested
solutions provides a meaningful improvement.
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1 INTRODUCTION

Identification of causal effects in macroeconomics is a daunting task. Structural Vector Autoregressions

(SVARs) have been used as a primary tool to infer these causal effects since Sims (1980), but the choice

of identification assumptions remains an open question. Over the last decade the use of instruments

for structural shocks (Mertens and Ravn, 2013; Stock and Watson, 2018; Caldara and Herbst, 2019) has

become arguably the most used identification approach, allowing transparent discussions of the under-

lying identification assumptions. A substantial subset of the instruments in macroeconomics are con-

structed as residuals of auxiliary regressions (Romer and Romer, 2004; Miranda-Agrippino and Ricco,

2021). In this paper, we use the well-known Smets and Wouters (2007) model as a data-generating pro-

cess to assess the performance of such an identification strategy. In particular, we estimate a correctly

specified monetary policy rule and treat a whitened version of that residual as our monetary policy in-

strument, broadly following the strategy of Miranda-Agrippino and Ricco (2021). We then use the in-

ternal instrument approach proposed in Plagborg-Møller and Wolf (2021). We compare specifications

that differ in the variables included in the VAR (Canova and Ferroni (2022) suggest that the performance

of SVARs depends crucially on the size of the VAR), in the number of lags (De Graeve and Westermark

(2025) propose to use a large number of lags to improve the performance of SVARs), and in the choice

of whether to whiten residuals. We also study the effects of changing the sample size and the role that

possible endogeneity in the auxiliary regressions plays.

In terms of related literature, the closest paper to our is Lloyd and Manuel (2024), who study the

effects of the common two-step approach where the instrument is first estimated in a separate regression

versus a one-step approach. In particular, they are interested in possible omitted variable bias when

different controls are used in the first and second steps and possible distortions in inference caused by

not taking into account estimation uncertainty from the first stage. In contrast to our work, they take

the residual from the first-stage approach as their shock of interest, whereas we are instead interested in

quantifying the bias induced in estimated responses. Such a bias arises naturally in finite samples, as the

residual will almost surely be a function of all structural shocks present in the data-generating process,

as we show in this paper.

2 OUR SETTING

We study impulse responses estimated via vector autogressions of the following form

Yt =
[

r̂t

Zt

]
=

L∑
ℓ=1

AℓYt−ℓ+ut , ut =
[

u(r )
t

u(Z )
t

]
, E [ut u⊺

t ] =Σu (1)

where the forecast error ut has mean zero and covariance matrix Σu . For simplicity, we use demeaned

data in our Monte Carlo simulations and thus abstract from an intercept in our VARs. We assume the first

element of the (N +1)-dimensional vector Yt , which we denote by r̂t , is an instrument for the structural

shocks of interest, whereas the other elements Zt are macroeconomic variables. Following Plagborg-

Møller and Wolf (2021), we identify impulse responses of interest via a recursive identification scheme.
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Specifically, in a recursive (triangular) SVAR with the ordering
[
r̂t , Z ⊺

t

]⊺, the impact (contemporaneous)

matrix is Ω= chol(Σu), the unique lower-triangular Cholesky decomposition satisfying Σu =ΩΩ⊺. This

restriction implies that the first reduced-form innovation u(r )
t is driven only by the first orthonormal

structural shock ε1
t , whereas u(Z )

t may load on all structural shocks. Let {Ch}h≥0 denote the reduced-form

moving-average (MA) coefficients of the VAR, defined by C0 = I and Ch =∑L
ℓ=1 AℓCh−ℓ for h ≥ 1, then the

impulse response of Y at horizon h to a one-unit innovation in ε1
t is Ψ(h) = ChΩe1, where e1 is the first

basis vector. Equivalently,

Cov
(
Yt+h , u(r )

t

)
Var

(
u(r )

t

) = ChΣu e1

e⊺1Σue1
= 1

ω11
ChΩe1 (2)

whereω11 := [Ω]11. Hence, the entire path ChΩe1 is identified up to a constant scalar (1/ω11). This scalar

factor of proportionality is due to the presence of independent measurement error in the instrument in

general settings. We discuss later exactly what normalization we use for the impulse responses in our

experiments.

As emphasized by Plagborg-Møller and Wolf (2021), this identification relies on contemporaneous

covariance restrictions and reduced-form dynamics; it does not require the structural shock of interest

to be invertible (i.e., recoverable from present and past reduced-form innovations) – in fact, presence

of measurement error rules out invertibility. This means that contemporaneous impulse responses are

given byΩ= chol(Σu) up to the aforementioned normalization and given estimates of Σu and A1, ..., AL ,

we can then estimate the impulse responses of interest.

We assume the true data-generating process is a dynamic stochastic, general equilibrium (DSGE)

model. We then ask whether the VAR methodology can recover impulse responses from data simulated

from this DSGE. The instrument is generated via

it = B⊺Zt + εm
t (3)

where it is a variable partially determined by the true shock of interest εm
t . If B = 0, we observe the shock

directly. In our application, this equation will stand in for a monetary policy rule and it will be the nomi-

nal interest rate. Because, in the DSGE, Zt generally depends contemporaneously on εm
t (see Section 3),

estimating (3) by OLS faces an endogeneity problem. However, Carvalho et al. (2021) show that, if the

monetary policy shock is not a very important contributor to fluctuations in Zt , OLS-based estimate of

monetary policy rule coefficients outperform standard instrumental variable-based approaches. They

verify this with Monte Carlo experiments using the same data generating process that we use below–the

Smets and Wouters (2007) model.1 Importantly (for our later discussion), they find that impulse re-

sponses using residuals of policy rules based on either GMM or OLS estimates are almost identical. This

finding is relevant for our work because we study scenarios where we do not only need to estimate the

1Carvalho et al. (2021) state that “In sum, using the Smets and Wouters (2007) model as a laboratory, we find the OLS estima-
tion bias to be small. More importantly, OLS estimates imply model dynamics that are remarkably close to the true ones, with
higher precision than dynamics implied by GMM estimates."

2
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parameters of the VAR in Equation (1), but also the parameters in Equation (3).

As a first step, it will be useful to define the observed/estimated instrument as follows. Given any

estimate B̂ ∈RN , define the residual-instrument as

r̂t (B̂) := it − B̂ ⊺Zt = (B − B̂)⊺Zt +εm
t (4)

This decomposition makes clear that any deviation B̂ ̸= B produces contamination: r̂t (B̂) ̸= εm
t and, in

general, r̂t (B̂) is correlated with other structural shocks as well. There are two distinct sources: (i) Endo-

geneity Bias: if the estimator targets B +δ ̸= B in population (as OLS does when Zt is contemporaneously

correlated with εm
t ), then even as T →∞ the pseudo-instrument converges to r⋆t = εm

t −δ′Zt , a mixture

of structural shocks. (ii) Sampling Error: even for an estimator consistent for B (e.g., a valid IV), finite-

sample noise in B̂ leaves a (B −B̂)⊺Zt term that induces contamination at Op (T −1/2) rates. In either case,

the residual-instrument is a noisy proxy for the target shock. We quantify its population correlation with

εm
t and its induced correlations with other shocks in Section 3.

3 THEORETICAL RESULTS

This section develops a set of theoretical results that clarify how closely the residual-based instrument,

r̂t (B̂), tracks the true structural shock, εm
t . We first study the general case for an arbitrary estimate (B̂)

then specialize to the OLS case to quantify both asymptotic and finite-sample correlations. Our goal is

to isolate sources of instrument contamination (e.g., sampling noise, endogeneity) without assuming a

particular data-generating mechanism beyond linearity and (weak) stationarity.

To be as agnostic as possible, we assume the following:

Assumption 1. The data-generating process, Zt , is generated by a (possibly) infinite order moving average

it = B⊺Zt + εm
t , Zt =

∞∑
ℓ=0

Hℓ εt−ℓ, t = 1, ...,T (5)

with Zt ∈ RN , εt = (ε1
t , . . . ,εN

t )⊺ ∈ RN , and fixed m ∈ {1, . . . , N }. Innovations εt are i.i.d. with E[εt ] = 0 and

E[εtε
⊺
t ] =Σεε = diag(σ2

1, . . . ,σ2
N ) ≻ 0. MA coefficients satisfy

∑∞
ℓ=0 ∥Hℓ∥ <∞.

Under these conditions, Zt is strictly stationary and ergodic, square integrable with

ΣZ Z := Var(Zt ) = ∑
ℓ≥0

HℓΣεεH⊺
ℓ
≻ 0, ΣZεm := Cov(Zt ,εm

t ) =σ2
m h0,m ,

where h0,m is the mth column of H0.

To concisely state our results, we stack the sample {Zt }T
t=1 into the matrix Z = [Z1, . . . , ZT ]⊺ ∈ RT×N ,

and likewise define the vectors i = (i1, . . . , iT )⊺ and εm = (εm
1 , . . . ,εm

T )⊺. With this notation, the OLS esti-

mate of the coefficient vector B and the usual projection and annihilator matrices are

B̂OLS = (Z ⊺Z )−1Z ⊺i , PZ = Z (Z ⊺Z )−1Z ⊺, MZ = IT −PZ

3
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We can then compute second moments of our residual instrument r̂t (B̂):

Cov
(
r̂t (B̂), Zt

)=ΣZ Z (B − B̂)+ΣZεm =ΣZ Z (B − B̂)+σ2
mh0,m (6)

Var
(
r̂t (B̂)

)= (B − B̂)⊺ΣZ Z (B − B̂)+σ2
m +2(B − B̂)⊺ΣZεm (7)

Equation (6) makes clear that unless B̂ solves the equationΣZ Z (B−B̂)+σ2
mh0,m = 0, the residual remains

correlated with Zt . Note that the first term inducing a correlation, ΣZ Z (B − B̂), will be present even if the

covariance between Zt and εm
t is 0; that is, even if the structural shock is exogenous to Zt in population

(so that ΣZεm = 0), any estimation error in B generates a correlation term ΣZ Z (B − B̂). When ΣZεm ̸= 0,

this bias is compounded by the intrinsic endogeneity of the policy rule itself, producing residuals that

conflate the target shock with contemporaneous responses of macroeconomic variables.

Proposition 1 (Finite-sample identities). For any realized sample, we have

B̂OLS = B + (Z ⊺Z )−1Z ⊺εm (8)

r̂ (B̂OLS) = i −Z B̂OLS = MZ ε
m (9)

Consequently Z ⊺r̂ (B̂OLS) = 0 exactly.

Proof. Immediate from B̂OLS = (Z ⊺Z )−1Z ⊺(Z B +εm) and IT −PZ = MZ .

These results make clear that the residual instrument will always be uncorrelated with the variables

Zt , even if there is endogeneity, i.e. if Zt is correlated with the true shock εm
t . The identities (8)–(9) imply

that, with B̂OLS, the residual instrument is orthogonal (in sample) to the variables, i.e. Z ⊺r̂ (B̂OLS) = 0

holds exactly for the realized sample. This is a property of OLS residuals and does not assert zero pop-

ulation covariance between r̂t and Zt ; in particular, endogeneity can persist in population even though

sample orthogonality holds by construction.

3.1 ASYMPTOTIC RESULTS We next characterize the large-sample behavior of the residual-shock rela-

tionship with N fixed and as T → ∞. Absent independent measurement error in the instrument, any

population correlation between the instrument and the true shock arises from endogeneity (i.e., from

ΣZεm ̸= 0), in contrast to the finite-sample distortions.

Proposition 2 (Population projection). Under Assumption 1 and assuming the ergodic LLN for linear

processes,

B̂OLS
p−→ B +δ, δ :=Σ−1

Z ZΣZεm =σ2
mΣ

−1
Z Z h0,m , (10)

r̂t (B̂OLS)
p−→ r⋆t := εm

t −δ⊺Zt . (11)

4
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Moreover,

Var(r⋆t ) =σ2
m −Σ⊺

ZεmΣ
−1
Z ZΣZεm =σ2

m(1−R2
m), (12)

R2
m := Σ⊺

ZεmΣ
−1
Z ZΣZεm

σ2
m

=σ2
m h⊺

0,mΣ
−1
Z Z h0,m ∈ [0,1], (13)

Cov(r⋆t ,εm
t ) = Var(r⋆t ), Corr(r⋆t ,εm

t ) =
√

1−R2
m . (14)

Proof. By ergodicity, T −1Z ⊺Z → ΣZ Z and T −1Z ⊺εm → ΣZεm ; see, e.g., Brockwell and Davis (1991, Ch. 7)

or Hamilton (1994, Ch. 3). Then (10) follows by continuous mapping. Next, (11) follows from the def-

inition of r̂t (B̂OLS) and (10), again by continuous mapping. The variance expression (12) is the Schur

complement in the covariance matrix of (Z ⊺
t ,εm

t )⊺, as we show in the appendix. Identities (13)–(14) are

immediate from (12).

The variable R2
m is the R2 of the linear projection of the shock εm

t on the macro variables Zt

R2
m = Var(δ⊺Zt )

Var(εm
t )

, δ = Σ−1
Z ZΣZεm

It measures the contemporaneous predictability of the target shock from Zt : R2
m = 0 means εm

t is orthog-

onal to Zt , whereas R2
m = 1 means εm

t lies in the span of Zt almost surely. Only the contemporaneous

coefficient h0,m enters ΣZεm = σ2
mh0,m and hence δ and R2

m ; lag coefficients {Hℓ : ℓ ≥ 1} affect ΣZ Z but

not ΣZεm . We state this explicitly as a corollary to Proposition 2:

Corollary 1 (Degeneracy and exact recovery). We have r⋆t ≡ 0 iff R2
m = 1, i.e., if and only if εm

t lies almost

surely in the span of Zt . Conversely, r⋆t = εm
t iff R2

m = 0, which here is equivalent to h0,m = 0.

3.2 FINITE-SAMPLE DISTRIBUTION OF ρ̂T We now study the finite-sample correlation between the true

shock εm
t and the residual-based instrument r̂t . Two cases permit clean results: First, when there is

no endogeneity (R2
m = 0), (Z ,εm) are independent, and OLS estimates yield a tractable distribution. As

we discuss below, this is not the most interesting scenario, but provides a tight bound. Second, when

endogeneity is present (R2
m > 0), we retain closed-form characterizations under stronger assumptions

(Gaussianity and i.i.d. data).

Define, as before,

r̂ = MZε
m , ρ̂T := Corr(r̂ ,εm) = r̂ ⊺εm

∥r̂∥∥εm∥ =
√

(εm)⊺MZεm

(εm)⊺εm

CASE I: R2
m = 0 (NO POPULATION PREDICTABILITY )

Proposition 3 (Distribution of the finite sample correlation). If the entire instrument process excludes the

m-th shock at all lags, i.e. Hℓem ≡ 0 for all ℓ ≥ 0, then (Z ,εm) are independent (by independence across

5
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components and time), and with εm following a spherical distribution (Gaussian, for example)2

ρ̂2
T ∼ Beta

(
T −N

2
,

N

2

)
, E[ρ̂2

T ] = T −N

T
(15)

Proof. Under Hℓem ≡ 0, the stacked εm is independent of Z ; MZ is fixed conditionally on Z and inde-

pendent of εm . Apply Lemmas 2 and 3 to obtain the Beta law and moments.

Note that even though the assumptions for this proposition are not very relevant for macroeco-

nomics (i.e., the shock of interest does not influence macro variables), the proposition is useful in that it

shows that even in the absence of endogeneity, the finite sample correlation of the instrument and the

shock do not have to be close to 1, especially in small samples and with relatively many controls. In our

Monte Carlo experiments, we revisit these correlations.

When Hℓem ̸≡ 0 for some ℓ≥ 1, then Z depends on the lagged target shock, so MZ is a function of (a

shift of) εm , and the independence needed in Lemma 4 is lost. The central Beta((T −N )/2, N /2) law does

not hold in general.

Corollary 2 (Jensen bound for the correlation). Under the conditions of Proposition 3, ρ̂2
T ∼ Beta

(T−N
2 , N

2

)
and

E[ρ̂2
T ] = T −N

T
(16)

Because x 7→p
x is concave on [0,1], Jensen’s inequality yields

E[ρ̂T ] = E[√ρ̂ 2
T

] ≤
√
E[ρ̂ 2

T ] =
√

T −N

T
=

√
1− N

T
(17)

The inequality is strict whenever 0 < N < T . Equality holds only in the degenerate case N = 0, where

ρ̂T ≡ 1.3

CASE II: R2
m > 0 (POSITIVE PREDICTABILITY ) We can derive similar results for the case when there is

endogeneity. To obtain an exact finite-sample law, we assume εt are Gaussian and that Zt has no lag

feedback from the shock, i.e., Hℓ = 0 for all ℓ≥ 1 (so Zt = H0εt ).

Proposition 4 (Noncentral Beta requires no lag feedback). Suppose εt is Gaussian and no lags enter Zt ,

i.e. Hℓ = 0 for all ℓ≥ 1 (so Zt = H0εt ). Then, stacking t , εm = Zδ+η with η∼ N (0,σ2
e IT ) independent of

Z , σ2
e =σ2

m(1−R2
m). Hence, with λ= ∥Zδ∥2/σ2

e ,

ρ̂2
T | Z ∼ Betanc

(
T−N

2 , N
2 ; λ

)
.

Proof. When Zt = H0εt and εt are i.i.d. Gaussian, (Z ,εm) are jointly normal with block-diagonal time

structure; the conditional residual η is i.i.d. Gaussian and independent of Z (standard MVN condition-

2A random variable X follows a spherical distribution if X and H X follow the same distribution for any orthogonal matrix H
(Muirhead, 2009).

3The correlation between the true shock and the instrument is always non-negative, as we prove in the appendix.

6



MATTHES, MENSHIKOV & WALKER: INSTRUMENT PITFALLS

ing), hence Lemma 4 applies, giving the noncentral Beta law; cf. Muirhead (2009, §1.2, §1.4), Johnson et

al. (1995, Ch. 34).

We can derive moments of this non-central Beta distribution by exploiting its representation as a

mixture of Beta random variables (Johnson et al., 1995) with respect to Poisson random variables. To do

so, we let K ∼ Poisson(λ/2). This implies that

E
[
ρ̂2

T | Z
]= T −N

2
E

[
1

T
2 +K

]
, K ∼ Poisson(λ/2).

Hence,

T −N

T +λ ≤ E
[
ρ̂2

T | Z
] ≤ T −N

T
, E

[
ρ̂T | Z

] ≤
√

T −N

T
.

A complete proof can be found in the appendix. The lower bound follows from Jensen’s inequality since

k 7→ 1/(c +k) is convex and decreasing; the upper bound from K ≥ 0. Thus endogeneity (larger λ) de-

presses the expected finite-sample correlation relative to the central case.

If some Hℓ ̸= 0 for ℓ ≥ 1, then Z contains lags of εm ; in the stacked regression, the projector MZ

depends on the same shock vector being projected. Thus U = (εm)⊺MZε
m and V = (εm)⊺PZε

m are

quadratic forms in a Gaussian vector with random idempotents that are functions of that vector; U and

V are not independent central/noncentral χ2 in general, and the noncentral Beta law does not hold.

Lemma 4 requires the projectors be fixed (or independent of Y ). Again, while these assumptions might

seem restrictive, the results are clean and useful bounds for the simulated results below.

3.3 LARGE-DEVIATION TAIL BOUNDS FOR ρ̂T Large-deviation (LD) theory describes how quickly sam-

pling probabilities for rare or “unfavorable” outcomes vanish as the sample size T grows. LD rate func-

tions provide simple sample-size benchmarks and are therefore useful in simulation analysis. For ex-

ample, given a target correlation threshold c and a probability α, LD theory can find the minimum T

required to make Pr(ρ̂T ≤ c) ≤α. In our context, these bounds help quantify the two effects: (i) how the

“dimensionality ratio” (N /T ) alone pushes ρ̂T below one even in the absence of endogeneity; and (ii)

how endogeneity further depresses the typical correlation level.

Define κT := N /T and assume κT → κ ∈ [0,1) as T →∞. An LD statement of the form

Pr(ρ̂T ≤ c) ≈ exp{−T I (c)} (18)

means that tail probabilities shrink exponentially fast with sample size, at a rate governed by a con-

vex “rate function” I (·): larger I (c) implies faster decay and, therefore, greater reliability for a given T .

Formally, such results follow from standard LD tools such as the Laplace principle or the Gärtner–Ellis

theorem; see Dembo and Zeitouni (1998, Ch. 2–3) or Boucheron et al. (2013, Ch. 2).

Under the conditions of Proposition 3 (independence of Z and εm and spherical εm), ρ̂2
T satisfies an

7
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LD principle on (0,1) with speed T and rate function

Iκ(x) = 1
2

[
(1−κ) log

1−κ
x

+ κ log
κ

1−x

]
, x ∈ (0,1), (19)

so that, for any ε> 0,

Pr
(
|ρ̂T −p

1−κ| > ε
)
≲ exp

{
− T inf

|r−p1−κ|>ε
Iκ(r 2)

}
(20)

This is a standard result for Beta-type statistics (e.g. Muirhead, 2009; Dembo and Zeitouni, 1998). The

dimensionality factor (κ= N /T ) pulls the typical correlation down to
p

1−κ and controls the exponential

decay of tail probabilities. These LD bounds formalize and extend the finite-sample findings above. The

earlier Beta-distribution results provide exact finite-T expectations such as E[ρ̂2
T ] = (T −N )/T , showing

that ρ̂T falls below one in expectation. The LD results show that this behavior persists beyond expectation

in that deviations from the typical value
p

1−κ become exponentially rare as T grows.

The same logic carries over to the endogenous case. To isolate this effect, consider the standard

fixed-N regime (so κ → 0). The LD rate now centers at the population limit
√

1−R2
m and quantifies

how endogeneity sharpens the exponential concentration of ρ̂T . Under the conditions of Proposition 4

(Gaussianity, Zt = H0εt ), ρ̂2
T obeys an LDP with speed T and a convex rate Iκ,ℓ(·) described by the (non-

central) mgfs of the underlying quadratic forms and a contraction step (Johnson et al., 1995, Ch. 34);

see also Dembo and Zeitouni (1998, Chs. 2–3). Thus, the results for the endogenous case are qualita-

tively identical to those for the independent case. The only change is that the typical or “most probable”

value of ρ̂T moves from 1 (the value in the independent, κ = 0 case) to
√

1−R2
m , reflecting the fact that

endogeneity acts as a distinct source of attenuation. The rate functions Iκ(·) and Iκ,ℓ(·) share the same

exponential form and depend on T only through the scaling factor with both delivering probabilities of

the shape Pr(ρ̂T ≤ c) ≈ e−T×I (c ). Consequently, deviations from
√

1−R2
m become exponentially rare at

the same speed as in the independence case, but with a steeper rate that increases in the noncentrality

parameter ℓ= R2
m/(1−R2

m).

Under Assumption 1, where Zt may depend on past shocks, the same large-deviation logic applies.

The empirical quadratic forms (T −1Z ⊺Z , T −1Z ⊺εm , T −1(εm)⊺εm) satisfy the standard LDP by the Gärtner–

Ellis theorem, and the contraction principle implies that ρ̂T inherits a rate function J (·) whose unique

minimum is again at
√

1−R2
m . Although J has no simple closed form, its role is the same in that it governs

the speed at which the sampling distribution of ρ̂T collapses around its population value. The existence

of such a rate function justifies the use of −T −1 logPr(ρ̂T ≤ c) as an empirical diagnostic in Monte Carlo

simulations, since this quantity converges to J (c) as T grows.

Across all three settings–independence, static endogeneity, and dynamic feedback–finite-sample ran-

domness and model dependence affect the location of ρ̂T but not the speed at which it concentrates.

Large-deviation principles quantify this concentration explicitly, showing that the apparent fragility of

instrument correlations in small samples decays exponentially in T in all three cases. Large-deviation

reasoning complements traditional finite-sample Monte Carlo analysis by adding a quantitative mea-

sure of how quickly small sample irregularities vanish as the available data length increases. In all of our

8
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cases studied above, we have exponential decay.

4 MONTE CARLO EXPERIMENTS

In order to assess the performance of the identification approach outlined in the previous section, we

simulate 1,000 datasets of length 1,000+M from the Smets and Wouters (2007) model, where we discard

the initial 1,000 periods as burn-in and vary M to study the effect of the sample size on our results. The

parameter values are given by the fixed parameters and the posterior mode estimates reported in Smets

and Wouters (2007). We present all the parameter values in Table 2 in the Appendix. In particular, the

monetary policy rule in that model is given by

rt = ρrt−1 + (1−ρ)
[
rππt + ry

(
yt − y p

t

)]+ r∆y
[(

yt − y p
t

)− (
yt−1 − y p

t−1

)]+εr
t ,

where yt is output in the economy, and y p
t is (potential) output under flexible prices. The monetary

policy shocks (εr
t ) follow an autoregressive process with an i.i.d. innovation

εr
t = ρr ε

r
t−1 +ηr

t .

We estimate this rule via OLS, following Carvalho et al. (2021). We then either directly use this residual

(possibly autocorrelated) as our instrument or, following Miranda-Agrippino and Ricco (2021), estimate

an AR(1) process on the policy rule residual and take the residual of that AR(1) regression as our instru-

ment. For each MC sample, we estimate the VAR via OLS and obtain the associated point estimate of

impulse responses to a monetary instrument. For each response variable and each horizon, we then

compute the median response and the 5%, 95% percentiles across all MC repetitions. As a benchmark

we use a three-variable VAR with 4 lags with the instrument ordered first and also including inflation and

output. The default sample size is M = 200.

4.1 RESULTS We first describe the correlation between the true monetary shock in the Smets and

Wouters (2007) model and our estimated instrument (Panel A of Table 1). Our estimated monetary pol-

icy rule has the correct functional form, so any differences come from either estimation error or endo-

geneity issues, as discussed above. The first column shows that, at face value, our estimation strategy

is successful–the estimated instrument is highly correlated with the shock of interest (0.9). However,

the remaining volatility in the instrument is due to correlation with the other structural shocks; specif-

ically, productivity shocks and risk premium shocks. Other shocks can have a sizable correlation with

the instrument in specific samples as well, with the maximum absolute correlation being 0.23 across MC

samples, shocks, and sample sizes. Importantly, doubling the sample size does not mitigate these effects.

Although the large correlation with the true monetary shock speaks well of the OLS-based strategy (Car-

valho et al., 2021) we use here, the high correlations with some of the other structural shocks necessitates

careful inspection of estimated impulse responses.4

4It might be useful to point out here that Carvalho et al. (2021) present an application where they build residual-based
instruments from policy rules estimated with either OLS or IV and find basically indistinguishable results.
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We know from Plagborg-Møller and Wolf (2021) that with an internal instrument approach we can

only identify relative impulse responses due to the presence of measurement error in the instrument.

Our exercises abstract from measurement error that is independent of the structural shocks. We there-

fore present impulse responses to a positive one-standard deviation innovation in the instrument and

compare those IRFs to the true impulse responses to a one-standard deviation monetary shock in the

Smets and Wouters (2007) model.

Monetary Policy Productivity Risk Premium Spending Investment-specific Price Mark-up Wage Mark-up

Panel A: Benchmark Monetary Policy Rule

100
0.92

(0.85, 0.97); 0.99
-0.13

(-0.28, 0.02); -0.46
0.27

(0.15, 0.37); 0.48
0.06

(-0.11, 0.24); 0.44
0.06

(-0.11, 0.22); 0.40
0.03

(-0.10, 0.16); 0.29
0.03

(-0.13, 0.18); 0.37

150
0.93

(0.88, 0.96); 0.99
-0.13

(-0.25, 0.00); -0.37
0.26

(0.17, 0.36); 0.43
0.07

(-0.07, 0.20); 0.32
0.06

(-0.08, 0.20); 0.33
0.03

(-0.07, 0.15); 0.25
0.03

(-0.10, 0.16); 0.32

200
0.93

(0.89, 0.96); 0.98
-0.13

(-0.24, -0.03); -0.38
0.26

(0.18, 0.34); 0.41
0.06

(-0.05, 0.18); 0.26
0.06

(-0.06, 0.19); 0.26
0.04

(-0.05, 0.13); 0.23
0.03

(-0.08, 0.14); 0.23

Panel B: Backward-Looking Monetary Policy Rule

100
0.98

(0.95, 1.00); 1.00
-0.00

(-0.16, 0.16); -0.37
-0.00

(-0.17, 0.17); 0.33
-0.00

(-0.17, 0.16); -0.31
0.01

(-0.16, 0.17); 0.35
-0.00

(-0.17, 0.17); 0.38
0.00

(-0.16, 0.16); 0.37

150
0.99

(0.96, 1.00); 1.00
0.00

(-0.13, 0.14); -0.27
0.00

(-0.14, 0.14); -0.25
0.00

(-0.13, 0.14); -0.27
0.00

(-0.14, 0.14); -0.32
0.00

(-0.13, 0.13); -0.28
-0.00

(-0.13, 0.14); 0.29

200
0.99

(0.97, 1.00); 1.00
-0.00

(-0.12, 0.11); -0.21
0.00

(-0.12, 0.12); -0.26
0.00

(-0.12, 0.13); 0.27
-0.00

(-0.12, 0.11); -0.21
-0.00

(-0.12, 0.12); 0.24
0.00

(-0.12, 0.12); 0.24

Table 1: Correlation between true monetary shock and instrument, for three sample sizes
across 1,000 MC datasets. Entries show the median, as well as 5th and 95th percentiles (in
parentheses) and the largest correlation in absolute value (next to the parentheses) across
the MC repetitions.

Benchmark. We focus on the impulse responses of output and inflation throughout. We plot the “true”

median impulse response from the SW model (solid, black); the median estimated response of the sim-

ulations (dashed, blue), calculated as the median response across simulations; and error bands (blue,

dotted) are constructed as percentiles of OLS point estimates from the various samples. The left panel

of Figure 1 plots the impulse response from our benchmark specification, i.e., three variables (instru-

ment, inflation, output), with 4 lags and 200 observations. Two points are noteworthy. First, there is

substantial variation across Monte Carlo samples, including significant probability that a “price puzzle"

emerges, i.e. an increase in inflation after a contractionary monetary policy shock. This is somewhat

reminiscent of the issues that have plagued structural VARs identified via sign restrictions (Wolf, 2020).

Second, the magnitude of the effect on inflation is underestimated in most samples. This is most severe

on impact, where the median impulse response is more than four times smaller than the true effect in

absolute value. Canova and Ferroni (2022) highlight that small VARs can often lead to distorted estimates

of impulse responses, even though their main focus is on identification schemes other than those that

use instruments. This leads to our first robustness exercise.

Adding Variables. The right panel of Figure 1 shows results for a larger, seven-variable VAR. This change

makes minimal difference to the median impulse response, a result that may seem surprising given find-

ings like Canova and Ferroni (2022) on the importance of VAR specification. However, the primary source
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of bias here is not omitted-variable misspecification in the VAR, but rather the instrument contamination

identified in Proposition 2. Because the policy rule is endogenous (R2
m > 0), the OLS instrument r̂t is a

contaminated proxy (r⋆t ) that mixes the true monetary shock with other structural shocks (as confirmed

in Table 1).

Since both the 3-variable and 7-variable VARs are identified using the same contaminated instru-

ment, both trace out the impulse response to the same incorrect proxy. The only notable change is a

slight widening of the confidence bands, which is also consistent with our theory (Proposition 3): in-

creasing the number of variables N for a fixed sample T increases the dimensionality ratio κ = N /T ,

adding to estimation uncertainty.
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Figure 1: IRFs to one standard deviation monetary policy shock identified via estimated instrument.
Benchmark three variable VAR vs seven variable VAR.

Increase Lag Length. Next, we ask what happens if we increase the lag length. De Graeve and Wester-

mark (2025) have shown that this can substantially reduce both bias and variance of estimated impulse

responses, as the variance reduction from correcting misspecification can be large.5 We check this in

Figure 2, where we increase the number of lags in our VAR from 4 to 16.

This result, however, provides a clear example of the finite-sample trade-offs discussed above. While

adding lags may reduce misspecification bias, it dramatically increases the number of parameters to be

estimated (from k ≈ 3×4 = 12 parameters per equation to k ≈ 3×16 = 48). This is precisely the “dimen-

sionality curse” principle explored in Proposition 3 and the LDP bounds. Just as a high κ = N /T ratio

5One of the applications in De Graeve and Westermark (2025) uses more lags in the Miranda-Agrippino and Ricco (2021)
application that uses a residual-based instrument for a monetary policy shock.
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degrades the instrument’s quality, a high parameter-to-observation ratio in the VAR estimation causes

the dynamic estimates (Aℓ) to become imprecise.

With our fixed sample of T = 200, the (potential) gain from reduced bias is swamped by an increase

in estimation variance. This manifests in Figure 2 as substantially wider error bands and a more pro-

nounced price puzzle, as the over-parameterized VAR has poor finite-sample properties.

Figure 2: IRFs to one standard deviation monetary policy shock identified via estimated instrument.
Benchmark three variable VAR with four lags vs three variable VAR with 16 lags.

Sample Size. Our benchmark sample size T = 200 is quite large for macro applications (50 years of

quarterly data). While not reported here, we did analyze the impact of reducing the sample size to T =
100. As the correlations in Table 1 suggests, it had negligible impact on our impulse response functions.

(Results available upon request.)

Removing Autocorrelation. Finally, we ask if removing the autocorrelation via an estimated AR model

as in Miranda-Agrippino and Ricco (2021) has any effect. Figure 3 shows what happens if we use this

alternative instrument in both the 3 and 7 variable VARs.

We find no meaningful difference. This is to be expected, since our internal instrument VAR approach

automatically accounts for lags of the instrument. The VAR estimation process is a “whitening” filter by

construction. Manually pre-whitening r̂t with a simple AR(1) is therefore redundant. The VAR’s lag struc-

ture already accounts for the instrument’s autocorrelation (and all other linear-dynamic relationships),

isolating the exact same innovation u(r )
t . We suspect that such a whitening procedure is helpful in ex-

ternal VAR settings such as Caldara and Herbst (2019), where the instrument’s own dynamics are not

explicitly modeled as part of the VAR system.

12
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Figure 3: IRFs to one standard deviation monetary policy shock identified via estimated instrument.
Benchmark three variable VAR with whitened instrument vs VARs with autocorrelated instruments.

4.1.1 REMOVING ENDOGENEITY A natural question is how our results are driven by the two sources

of contamination identified in Section 3: (i) endogeneity bias, and (ii) finite-sample estimation error.

One possibility would be to re-estimate the equation that gives us the instrument using instrumental

variables instead of OLS. However, Carvalho et al. (2021) show that OLS provides estimates of the policy

rule coefficients that are for all practical purposes at least as good as IV-based estimates with common

instruments for the policy rule estimation. Hence, instead we take a different approach and modify the

data-generating process so that the policy rule is purely backward looking, removing endogeneity and

thus any doubt that OLS-based estimation provides sensible estimates. We adopt the following backward

looking version of the monetary policy rule:

rt = ρrt−1 + (1−ρ)
[
rππt−1 + ry

(
yt−1 − y p

t−1

)]+ r∆y
[(

yt−1 − y p
t−1

)− (
yt−2 − y p

t−2

)]+εr
t .

By construction, the monetary shock is now contemporaneously orthogonal to the variables in the rule,

forcing R2
m = 0. We then estimate a correctly specified backward-looking rule via OLS to generate the

instrument.

Panel B of Table 1 shows the result of this change. The median correlation between the instrument

and the true monetary shock (column 1) is now ≈ 0.99. Critically, the median correlation with all other

structural shocks (columns 2-7) is now exactly zero. This confirms that by removing endogeneity, we

have eliminated the population-level OLS bias (δ) that was contaminating the instrument.

Figure 4 shows the associated impulse responses. Two results stand out. First, the median IRF (the

population-level result) now correctly lines up with the true SW model. This is the direct result of re-
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moving endogeneity as shown in Proposition 2. By forcing R2
m = 0, the OLS instrument r̂t now converges

to the true shock εm
t , not the contaminated proxy r⋆t . Second, the dispersion in the estimates remains

quite large. Many point estimates still show a price puzzle, as evidenced by the wide percentile bands.

This result is consistent with Proposition 3 and our LDP bounds. Even with endogeneity solved, the “di-

mensionality curse” (κ= N /T > 0) remains. This finite-sample error ensures that the instrument in any

single sample is still noisy, leading to wide dispersion.

Figure 4: IRFs to one standard deviation monetary policy shock identified via estimated instrument.
Benchmark three variable VAR vs 3 variable VAR for data-generating process with backward-looking
monetary policy rule.

5 CONCLUSION

Endogeneity is pervasive in macroeconomics. Our benchmark results and those extensions that do not

remove endogeneity are useful characterizations of the issues that researchers developing an instrumen-

tal variable approach must confront. Many instruments rely on estimating auxiliary regressions where

similar issues will arise, even if they do not fit exactly in the residual-based framework studied here (Bu

et al., 2021). Instrument, while highly correlated with “true” shock, may still be compromised through

contamination by other shocks. We show that various suggestions in the literature to improve the per-

formance of structural VARs, such as increasing the lag length or using larger VARs, do not substantially

fix these issues.
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A SOME USEFUL THEOREMS

Lemma 1 (Idempotents and orthogonal projectors). A square matrix P is idempotent if P 2 = P. If Z has

full column rank, then PZ := Z (Z ⊺Z )−1Z ⊺ and MZ := IT −PZ are symmetric idempotents; moreover, PZ is

the orthogonal projector onto col(Z ) and MZ onto col(Z )⊥. See Seber and Lee (2003, Appendix B).

Lemma 2 (Spectral theorem representation). If S is real symmetric then S =QΛQ⊺ with orthogonal Q; if

additionally S2 = S, then Λ has only 0’s and 1’s. Writing Q = [Q1 Q2] for eigenvectors of eigenvalues 1 and

0 respectively, S = Q1Q⊺
1 and IT −S = Q2Q⊺

2 . Apply to S = PZ to obtain PZ = Q1Q⊺
1 and MZ = Q2Q⊺

2 . See

Horn and Johnson (2013, Thm. 4.1.5).

Lemma 3 (Spherical radius–direction factorization). If Y is spherically symmetric in RT , then Y
d= RU

with R ≥ 0, U ∼ Unif(ST−1), where ST−1 is the unit sphere in RT , R ⊥⊥ U . Moreover (U 2
1 , . . . ,U 2

T ) ∼
Dirichlet( 1

2 , . . . , 1
2 ), so the sum of any k coordinates is Beta(k/2,(T −k)/2). See Muirhead (2009, §1.5), Fang

et al. (1990, Ch. 2), Johnson et al. (2000, Ch. 49).

Lemma 4 (Quadratic forms in Gaussian vectors). Let Y ∼NT (µ,Σ) with Σ≻ 0.

1. If A is symmetric and idempotent with rank(A) = r , then in the spherical case Σ=σ2IT ,

Y ⊺AY

σ2 ∼ χ2
r

(
µ⊺Aµ

σ2

)
.

More generally, Y ⊺BY is noncentral χ2 iff BΣ is idempotent (Muirhead, 2009, Thm. 1.4.2).

2. (Independence). If A,B are symmetric (constant) matrices, then

Y ⊺AY ⊥ Y ⊺BY ⇐⇒ AΣB = 0.

In the case Σ = σ2IT , this reduces to AB = 0 (Craig, 1943; Laha, 1956; Li, 2000; Ogawa and Olkin,

2008). In particular, if A and B are orthogonal projectors onto orthogonal subspaces, then Y ⊺AY

and Y ⊺BY are independent.

When A,B are random but independent of Y , the statement in (2) holds conditionally on (A,B).

Proposition 5 (Nonnegativity of the OLS residual–shock correlation). Let W ∈ RT×N have full column

rank and define the projection PW := W (W ⊺W )−1W ⊺ and the residual-maker MW := IT −PW . For any

nonzero vector y ∈RT , set r := MW y and

ρ̂T := Corr(r, y) = r ⊺y

∥r∥∥y∥ .

Then

ρ̂T = ∥r∥
∥y∥ ∈ [0,1].
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Consequently ρ̂T equals the positive square root

ρ̂T =
√

y⊺MW y

y⊺y
.

Moreover, ρ̂T = 0 iff r = 0 (equivalently y ∈ col(W )), and ρ̂T = 1 iff PW y = 0 (equivalently y ⊥ col(W )).

Proof. Since MW is a symmetric idempotent matrix (orthogonal projector onto col(W )⊥), we have M⊺
W =

MW and M 2
W = MW (see, e.g., Seber and Lee, 2003, Appendix B). With r = MW y ,

r ⊺y = y⊺MW y = y⊺M 2
W y = (MW y)⊺(MW y) = r ⊺r = ∥r∥2.

Hence

ρ̂T = r ⊺y

∥r∥∥y∥ = ∥r∥2

∥r∥∥y∥ = ∥r∥
∥y∥ ≥ 0.

Because r is an orthogonal projection residual, the Pythagorean decomposition ∥y∥2 = ∥PW y∥2+∥MW y∥2

gives ∥r∥ ≤ ∥y∥, so ρ̂T ≤ 1. The characterization of the equality cases is immediate from r = 0 and

PW y = 0.

B COVARIANCES AND SCHUR COMPLEMENTS

Definition 1 (Schur complement). LetΣ=
[

A B

C D

]
be a block matrix with A ∈RN×N invertible. The Schur

complement of A in Σ is

SD·A := D −C A−1B.

When Σ is symmetric (so C = B⊺), this reduces to SD·A = D −B⊺A−1B.

Remark 1 (Basic facts). If Σ⪰ 0 and A ≻ 0, then its Schur complement SD·A ⪰ 0. Moreover,

det(Σ) = det(A) det(SD·A), Σ−1 =
[

A−1 + A−1BS−1
D·AB⊺A−1 −A−1BS−1

D·A
−S−1

D·AB⊺A−1 S−1
D·A

]
,

whenever the inverses exist. See, e.g., Horn and Johnson (2013), Boyd and Vandenberghe (2004), Zhang

(2005).

Proposition 6 (Variance as a Schur complement). Let the zero-mean random vector (Z ⊺
t , yt )⊺ ∈RN+1 have

block covariance

Var

(
Zt

yt

)
=

[
ΣZ Z ΣZ y

Σy Z σy y

]
, ΣZ Z ≻ 0.
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Let β := Σ−1
Z ZΣZ y be the population linear projection of yt on Zt , and define the innovation (projection

residual) r⋆t := yt −β⊺Zt . Then

Var(r⋆t ) = σy y −Σy Z Σ
−1
Z Z ΣZ y ,

which is exactly the Schur complement of ΣZ Z in the block covariance above.

Proof. Using β=Σ−1
Z ZΣZ y ,

Var(yt −β⊺Zt ) = Var(yt )−2β⊺Cov(Zt , yt )+β⊺Var(Zt )β

=σy y −2Σ⊺
Z yΣ

−1
Z ZΣZ y +Σ⊺

Z yΣ
−1
Z ZΣZ ZΣ

−1
Z ZΣZ y

=σy y −Σy ZΣ
−1
Z ZΣZ y .

By Definition 1 (with A =ΣZ Z , D =σy y , B =ΣZ y ), this equals the Schur complement SD·A .

Remark 2 (Connection to conditional variance). If (Zt , yt ) is jointly Gaussian, then Var(yt | Zt ) = σy y −
Σy ZΣ

−1
Z ZΣZ y , so the Schur complement equals the conditional variance. The positivity SD·A ≥ 0 implies

0 ≤ R2 ≤ 1, with equality cases corresponding to perfect (in)predictability.

Our application. Set yt = εm
t and Zt as in the dynamic setup. Then

[
ΣZ Z ΣZ εm

Σεm Z σ2
m

]
⇒ Var(r⋆t ) =σ2

m −Σ⊺
Z εm Σ

−1
Z Z ΣZ εm ,

which is exactly equation (12).

Lemma 5 (Deriving (13)–(14) from (12)). Recall (12):

Var(r⋆t ) =σ2
m −Σ⊺

Zεm Σ
−1
Z Z ΣZεm . (12)

Then:

1. Expression for R2
m ( (13)). Define the population R2 of the linear projection of εm

t on Zt as

R2
m := Var

(
δ⊺Zt

)
Var(εm

t )
, δ := Σ−1

Z ZΣZεm .

Because Var(δ⊺Zt ) = δ⊺ΣZ Zδ,

R2
m = δ⊺ΣZ Zδ

σ2
m

= Σ⊺
Zεm Σ

−1
Z Z ΣZεm

σ2
m

.

Under the MA representation Zt = ∑
ℓ≥0 Hℓεt−ℓ with independent components and serial indepen-
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dence of (εt ),

ΣZεm = Cov
( ∑
ℓ≥0

Hℓεt−ℓ, εm
t

)
= ∑
ℓ≥0

HℓCov(εt−ℓ,εm
t ) = H0 Cov(εt ,εm

t ) = H0σ
2
mem =σ2

mh0,m .

Substituting gives the stated form

R2
m =σ2

m h⊺
0,mΣ

−1
Z Z h0,m ∈ [0,1]. (13)

2. Covariance with the target shock ( (14), first part). Using r⋆t = εm
t −δ⊺Zt and δ=Σ−1

Z ZΣZεm ,

Cov(r⋆t ,εm
t ) = Var(εm

t )−δ⊺Cov(Zt ,εm
t )

=σ2
m −δ⊺ΣZεm

=σ2
m −Σ⊺

Zεm Σ
−1
Z Z ΣZεm

= Var(r⋆t ) by (12).

3. Correlation with the target shock ( (14), second part). By the previous step,

Corr(r⋆t ,εm
t ) = Cov(r⋆t ,εm

t )√
Var(r⋆t )

√
Var(εm

t )
= Var(r⋆t )√

Var(r⋆t )
√
σ2

m

=
√

Var(r⋆t )

σ2
m

.

Use (12) and the definition of R2
m just derived:

Var(r⋆t )

σ2
m

= 1− Σ
⊺
Zεm Σ

−1
Z Z ΣZεm

σ2
m

= 1−R2
m ,

hence

Corr(r⋆t ,εm
t ) =

√
1−R2

m . (14)

Lemma 6 (Noncentral-Beta via Poisson mixture). Let Z ∈ RT×N have full column rank N < T . Let ε =
(εm

1 , . . . ,εm
T )⊺ be jointly Gaussian with Z and write

ρ̂2
T ≡ ε⊺MZε

ε⊺ε
.

Let a := (T −N )/2, b := N /2, δ := Σ−1
Z ZΣZεm , σ2

e := Var(εm
t )(1−R2

m), and λ := ∥Zδ∥2/σ2
e ≥ 0. Then, condi-

tional on Z ,

ρ̂2
T | Z ∼ Betanc(a, b; λ) and ρ̂2

T
d= YK , Yk ∼ Beta(a,b +k), K ∼ Poisson

(
λ
2

)
,

with K independent of {Yk }k≥0.

Proof. Write U := ε⊺MZε and V := ε⊺PZε. Under joint normality and orthogonality of MZ and PZ , U ∼
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σ2
eχ

2
T−N , V ∼σ2

eχ
′2
N (λ), and U ⊥ V . Therefore ρ̂2

T =U /(U +V ) | Z ∼ Betanc(a,b;λ). The Poisson–mixture

representation follows from the decomposition of a noncentral χ2 as a Poisson mixture of central χ2

variables and the induced mixture for the ratio; see, e.g., the noncentral Beta chapter in Johnson et al.

(1995) and regression R2 sampling theory in Muirhead (2009).

Corollary 3 (Bounds for the first moment of ρ̂2
T ). Under the conditions of Lemma 6,

T −N

T +λ ≤ E
[
ρ̂2

T |Z
] ≤ T −N

T
(21)

Proof. By Lemma 6 and the law of iterated expectations,

E
[
ρ̂2

T | Z
]= E[E[ρ̂2

T | K , Z
] ∣∣∣ Z

]
= E

[ a

a +b +K

]
, K ∼ Poisson

(
λ
2

)
.

Upper bound. Since K ≥ 0 almost surely,

1

a +b +K
≤ 1

a +b
=⇒ E

[
ρ̂2

T | Z
]≤ a

a +b
= T −N

T
.

Lower bound. The map x 7→ 1/x is convex on (0,∞). Hence, by Jensen,

E

[
1

a +b +K

]
≥ 1

a +b +E[K ]
= 1

a +b +λ/2
,

so

E
[
ρ̂2

T | Z
] ≥ a

a +b +λ/2
= (T −N )/2

T /2+λ/2
= T −N

T +λ ,

which is the claimed lower bound.

Corollary 4 (A universal bound for the expected correlation). Under the conditions of Lemma 6,

E
[
ρ̂T |Z

] ≤
√
E
[
ρ̂2

T | Z
] ≤

√
T −N

T
(22)

Proof. The function x 7→ p
x is concave on [0,1], so by Jensen, E[ρ̂T | Z ] ≤

√
E[ρ̂2

T | Z ]. Combining this

with the upper bound in (21) yields (22).

Remark 3 (Tightness and special cases). (i) The upper bound in (21) is tight at λ = 0 (the central case

R2
m = 0), where ρ̂2

T is Beta((T −N )/2, N /2) with mean (T − N )/T . (ii) For fixed (T, N ), the lower bound

decreases monotonically inλ: ∂ {(T−N )/(T+λ)}/∂λ< 0. (iii) The correlation bound (22) improves (weakly)

with T and worsens with N but does not depend on λ.

C PARAMETER VALUES IN MODEL SIMULATIONS
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Parameter Notation Value

Curvature Kimball aggregator wages εw 10.00
Feedback technology on exogenous spending ρg a 0.53
Curvature Kimball aggregator prices εp 10.00
Steady state hours l̄ -0.10
Steady state inflation rate π̄ 0.82
Time preference rate in percent 100(β−1 −1) 0.16
Coefficient on MA term, wage markup µw 0.89
Coefficient on MA term, price markup µp 0.74
Capital share α 0.19
Capacity utilization cost ψ 0.55
Investment adjustment cost ϕ 5.49
Depreciation rate δ 0.03
Risk aversion σc 1.40
External habit degree λ 0.71
Fixed cost share φp 1.61
Indexation to past wages ιw 0.59
Calvo parameter wages ξw 0.74
Indexation to past prices ιp 0.23
Calvo parameter prices ξp 0.66
Frisch elasticity σl 1.92
Gross markup wages φw 1.50
Taylor rule inflation feedback rπ 2.03
Taylor rule output growth feedback r∆y 0.22
Taylor rule output level feedback ry 0.08
Interest rate persistence ρ 0.82
Persistence, productivity shock ρa 0.96
Persistence, risk premium shock ρb 0.18
Persistence, spending shock ρg 0.98
Persistence, risk premium shock ρi 0.71
Persistence, monetary policy shock ρr 0.13
Persistence, price markup shock ρp 0.90
Persistence, wage markup shock ρw 0.97
Net growth rate in percent γ̄ 0.43

Steady state exogenous spending share ḡ
ȳ 0.18

Standard deviation, productivity shock σa 0.45
Standard deviation, risk premium shock σb 0.24
Standard deviation, spending shock σg 0.52
Standard deviation, investment-specific technology shock σI 0.45
Standard deviation, monetary policy shock σr 0.24
Standard deviation, price mark-up shock σp 0.14
Standard deviation, wage mark-up shock σw 0.24

Table 2: Parameter values used in simulations of the Smets and Wouters model.
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